UPJO from ultrasounds images, Hydronephrosis.

Article DOIhttp://dx.doi.org/10.1109/CRV.2018.00021
ObjectiveTo diagnose and grade ureteropelvic junction obstruction from ultrasound images
AI ApproachSegmentation and CNN
Data Source(s)Single institutional series (229 patients, 3289 ultrasound images)
Model Input810 x 608 pixels transverse and coronal section renal US images
Model OutcomeHydronephrosis from UPJO
SFU Grade
Model MetricsAUC grade 0-2: 0.98
AUC grade 3: 0.90
AUC grade 4: 0.97
Model UsabilityNA

AI = Artificial intelligence, SFU = Society for Fetal Urology, CNN = Convolutional Neural Network

Leave a comment